Introduction to GPUs and to the Linux Graphics
Stack

Martin Peres
CC By-SA 3.0

Nouveau developer
Ph.D. student at LaBRI

November 26, 2012

| - Hardware : Anatomy of a GPU
®000

General overview

Outline

o | - Hardware : Anatomy of a GPU
@ General overview

2/36

| - Hardware : Anatomy of a GPU
0e00

General overview

General overview of a modern GPU's functions

@ Display content on a screen
@ Accelerate 2D operations
@ Accelerate 3D operations

@ Decode videos

@ Accelerate scientific calculations

| - Hardware : Anatomy of a GPU
coeo

General overview

Clocl Front-side
Graphics bus
card slot

Chipset

Memory Slots

High-speed
graphics bus

(AGP or PCI Northbridge [RZZUE
Express) bus

(memory
controller hub)

Onboard

Southbridge graphics

(1/0 controller controller
hub)

IDE

SATA

LB Cables and

Audio Ceargeec ports leading

CMOS Memory off-board

PCl Slots

Super 1/0O

Serial Port

Flash ROM
(BIOS)

| - Hardware : Anatomy of a GPU
oooe

General overview

Video outputs) Video RAM Power stage

Y

Host communication bus
Source: http://www.flickr.com/photos/stefan_ledwina/557505323

Hardware architecture

@ GPU: Where all the calculations are made

@ VRAM: Stores the textures or general purpose data
@ Video Outputs: Connects to the screen(s)

@ Power stage: Lower the voltage, regulate current

@ Host communication bus: Communication with the CPU

| - Hardware : Anatomy of a GPU
®00000

Driving screens

Outline

o | - Hardware : Anatomy of a GPU

@ Driving screens

6/36

| - Hardware : Anatomy of a GPU
0®0000

Driving screens

VGA Encoder ——» VGA Conn
.
v
o Display Port Encoder ——» DP Conn
- A
DVI Encoder — DVI Conn

Driving screens : the big picture

Framebuffer: The image to be displayed on the screen(VRAM)
CRTC: Streams the framebuffer following the screen’s timings
Encoder: Convert the CRTC's output to the right PHY signal

Connector: The actual connector where the screen is plugged

7/36

| - Hardware : Anatomy of a GPU
00®000

Driving screens

= s 2%

Screen connectors

@ VGA: Video, introduced in 1987 by IBM

@ DVI: Video, introduced in 1999 by DDWG

e DP: Video & Audio, introduced in 2006 by VESA

e HDMI: Video & Audio, introduced in 1999 by HDMI Founders

8/36

| - Hardware : Anatomy of a GPU
000e®00

Driving screens

CRTC Scanout

- = —— — Line 0
e HBlank _ _ _ __-----""7
k BRI _
| = e Line 1
[HBlank _ _ _ - - ----""7"7
! e _ e
\ L -
'
\
\ — LineY-2
\ HBlank _ _ _ - -----"7"7
\ I L tar
\ = — LineY-1
\ ——
\ HBlank _ _ _ _ - ---""
\ Sel
\ Line Y
- '
——— VBlank

Driving screens : the CRT Controller
@ Streams the framebuffer following the screen’s timings

o After each line, the CRTC must wait for the CRT to go back
to the beginning of the next line (Horizontal Blank)

@ After each frame, the CRTC must wait for the CRT to go
back to the first line (Vertical Blank)

@ Timings are met by programming the CRTC clock using PLLs

9/36

| - Hardware : Anatomy of a GPU
0000e0

Driving screens

VGA cable 4
EDID signal

EDID
EEPROM

]
w7 Screen

[CRTC ¢

1

Configuring the CRTC : Extended display identification data

@ Stored in each connector of the screen (small EEPROM)

@ Is usually accessed via a dedicated 12C line in the connector
@ Holds the modes supported by the screen connector

@ Processed by the host driver and exposed with the tool xrandr

(see xrandr --verbose)

10/36

| - Hardware : Anatomy of a GPU
oooooe

Driving screens

Example: Some display standards
@ 1981 : Monochrome Display Adapter (MDA)

e text-only
e monochrome
e 720 * 350 px or 80*25 characters (50Hz)

@ 1981 : Color Graphics Adapter (CGA)

e text & graphics
e 4 bits (16 colours)
e 320 * 200 px (60 Hz)

@ 1987 : Video Graphics Array (VGA)

e text & graphics
e 4 bits (16 colours) or 8 bits (256 colours)
e 320*200px or 640*480px (<= 70 Hz)

11/36

| - Hardware : Anatomy of a GPU
®000

Host < — > GPU communication

Outline

o | - Hardware : Anatomy of a GPU

@ Host < — > GPU communication

12/36

| - Hardware : Anatomy of a GPU
0®00

Host < — > GPU communication

Modern host communication busses

@ 1993 : Peripheral Component Interconnect (PCl)

e 32 bit & 33.33 MHz

e Maximum transfer rate: 133 MB/s
1996 : Accelerated Graphics Port (AGP)

e 32 bit & 66.66 MHz

e Maximum transfer rate: 266 to 2133 MB/s (1x to 8x)
@ 2004 : PCI Express (PCle)

o 1lane: 0.25 — > 2 GB/s (PCle vl.x — > 4.0)
o up to 32 lanes (up to 64 GB/s)
o Improve device-to-device communication (no arbitration)

Several generic configuration address spaces (BAR)
Interruption RQuest (IRQ)

13 /36

| - Hardware : Anatomy of a GPU
0oe0

Host < — > GPU communication

Programming the GPU : Register access via MMIO

@ A GPU'’s configuration is mostly stored in registers;

@ A register is usually identified by an address in a BAR;
@ We can then access them like memory;
@ This is called Memory-Mapped Input/Output (MMIO).

0 Logical address X
L T T T T
1 1 1 1 1
0 lUnusedI : i q Unused
(swaP).’l P :'/ \\\
y | A . P ot 0 & oxfrtr
e GPU 0, BAR 0
5 : Register Space
Disk RAM PCI-01:00 BARO

Physical address
Example of a CPU process's virtual memory space

14 /36

| - Hardware : Anatomy of a GPU
ocooe

Host < — > GPU communication

GTT/GART

Providing the GPU with easy access to the Host RAM

Process virtual address space (VM)

C |

r—F Vo — —\ \Physical address
N W [EZLGART

| —

GPU virtual address (VRAM + GART) P

Location of the address/memory:

[Jeru [Jepu [|Rram [] GTT/GART(references RAM) [| Device

GART as a CPU-GPU buffer-sharing mechanism

A program can export buffers to the GPU:
e Without actually copying data (faster!);
@ Allow the GPU to read textures & data from the program;

15/36

Il - Host : The Linux graphics stack
®000

General overview

Outline

e Il - Host : The Linux graphics stack
@ General overview

16 /36

Il - Host : The Linux graphics stack
0®00

General overview

The GPU needs the host for:

@ Setting the screen mode/resolution (mode setting);
@ Configuring the engines and communication busses;

@ Handling power management;
e Thermal management (fan, react to overheating/power);
o Change the GPU's frequencies/voltage to save power;
@ Processing data:
o Allocate processing contexts (GPU VM + context ID);
o Upload textures or scientific data;
e Send commands to be executed in a context.

17 /36

Il - Host : The Linux graphics stack

[eJe] le]

General overview

Overview of the components of a graphics stack

A GPU with its screen;

One or several input devices (mouse, keyboard);

o
o
@ A windowing system (such as the X-Server and Wayland);
@ Accelerated-rendering protocols (such as OpenGL);

o

Graphical applications (such as Firefox or a 3D game).

Components of the Linux Graphics stack

@ Direct Rendering Manager (DRM) : exports GPU primitives;
o X-Server/Wayland : provide a windowing system;

@ Mesa : provides advanced acceleration APlIs;

A

18 /36

General overview

The Linux graphics stack

User space

Qt

Applications

gtk nexuiz

Xorg

xlib

network

x-server

ddx

mesa

libdrm

Kernel space

drm

nouveau radeon

intel

Rasterizer

If UCs*

19/36

Il - Host : The Linux graphics stack
®0

DRM and libdrm

Outline

e Il - Host : The Linux graphics stack

@ DRM and libdrm

20 /36

Il - Host : The Linux graphics stack

oe

DRM and libdrm

Direct Rendering Manager

@ Inits and configures the GPU;
@ Performs Kernel Mode Setting (KMS);
@ Exports privileged GPU primitives:

o Create context + VM allocation;
Command submission;

VRAM memory management: GEM & TTM,;
Buffer-sharing: GEM & DMA-Buf;

@ Implementation is driver-dependent.

libDRM

@ Wraps the DRM interface into a usable API;
@ Is meant to be only used by Mesa & the DDX;

21/36

Il - Host : The Linux graphics stack
000

Mesa

Outline

e Il - Host : The Linux graphics stack

@ Mesa

22 /36

Il - Host : The Linux graphics stack
oceo

Mesa

@ Provides advanced acceleration APlIs:

o 3D acceleration: OpenGL / Direct3D
e Video acceleration: XVMC, VAAPI, VDPAU

@ Mostly device-dependent (requires many drivers);

Mesa

@ Divided between mesa classics and gallium 3D;

Mesa classics

@ Old code-base, mostly used by drivers for old cards;

@ No code sharing between drivers, provide only OpenGL;

Gallium 3D

@ Built for code-sharing between drivers (State Trackers);

@ Pipe drivers follow the instructions from the Gallium interface;

@ Pipe drivers are the device-dependent part of Gallium3D;

23 /36

Il - Host : The Linux graphics stack
[ofe }

Applications

‘Weston X-server mplayer xonotic Qt
| 1
T 1
Mesa \ x
libgl
T ‘
lSIaleTrackers / L \ Me<aN{s‘;ics \
Y
egl xorg VDPAU OpenGL intel radeon nouveau_vieux swrast
L /
Gallium
/ / / pm’/{l " / \ \ \
softpipe llvmpipe nvs0 nveo r300g 600g nv30
i
\J \. X V K
GPU
LR (through libdrm)
CPU

24 /36

Il - Host : The Linux graphics stack
®00

X11

Outline

e Il - Host : The Linux graphics stack

e X11

25/36

Il - Host : The Linux graphics stack
oeo

X11 and the X-Server
@ X11 is a remote rendering API that is 25 years old;
@ Exports drawing primitives like filled circles, lines;

@ Is extensible via extensions: eg. DRI2, composite, AIGLX.

@ Implements the X11 protocol and provides extensions;

@ Needs a window manager to display windows (like compiz);

Holds 2D acceleration drivers (DDX): nouveau, radeon, intel;

@ Logs in /var/log/Xorg.0.log (check them for errors).

The X Resize, Rotate and Reflect Extension (XRandR)

@ Common X API to configure screens and multi head;

@ Implemented by the open and proprietary drivers;

26 /36

Il - Host : The Linux graphics stack
ooe

X Client X Client
e
X Client

i

Xserver T ® Compositor

.

N
.

KMS evdev
Kernel

Reaction to an input event

@ 1: The kernel driver evdev sends an event to the X-Server;
@ 2: The X-Server forwards it to the window with the focus;
@ 3: The client updates its window and tell the X-Server;

@ 4 & 5: The X-Server lets the compositor update its view;

@ 6: The X-Server sends the new buffer to the GPU.

27 /36

Il - Host : The Linux graphics stack
®00

Wayland

Outline

e Il - Host : The Linux graphics stack

@ Wayland

28 /36

Il - Host : The Linux graphics stack
o] 1o

Wayland

Wayland

@ Protocol started in 2008 by Kristian Hggsberg;

@ Aims to address some of X11 shortcomings;
@ Wayland manages:

o Input events: Send input events to the right application;
o Copy/Paste & Drag'n'Drop;
o Window buffer sharing (the image representing the window);

Wayland Compositor

@ Implements the server side of the Wayland protocol;

@ Talks to Wayland clients and to the driver for compositing;

@ The reference implementation is called Weston.

29 /36

Il - Host : The Linux graphics stack
ocoe

Wayland

Wayland Client

Wayland
Compositor
.
® \@
N
KMS evdev
Kernel

Reaction to an input event

@ 1: The kernel driver evdev sends an input event to “Weston";
@ 2: “Weston” forwards the event to the right Wayland client;
@ 3: The client updates its window and send it to “Weston";

@ 4: Weston updates its view and send it to the GPU.

30/36

Il - Host : The Linux graphics stack
®00

X11 vs Wayland

Outline

e Il - Host : The Linux graphics stack

@ X11 vs Wayland

31/36

Il - Host : The Linux graphics stack
oeo

X11 vs Wayland

X11 vs Wayland

@ Rendering protocol vs compositing API:

e X11 provides old primitives to get 2D acceleration (such as
plain circle, rectangle, ...);

e Wayland let applications render their buffers how they want;

@ Complex & heavy-weight vs minimal & efficient:

e X11 is full of old and useless functions that are hard to
implement;

e Wayland is minimal and only cares about efficient buffer
sharing;

@ Cannot realistically be made secure vs secureable protocol.

32/36

Il - Host : The Linux graphics stack
ooe

X11 vs Wayland

X11 : Security

@ X doesn't care about security and cannot be fixed:

e Confidentiality: X applications can spy other applications;
o Integrity: X applications can modify other apps’ buffers;
e Auvailability: X applications can grab input and be fullscreen.

@ An X app can get hold of your credentials or bank accounts!

@ An X app can make you believe you are using SSL in Firefox!

Wayland : Security

e Wayland is secure if using a secure buffer-sharing mechanism;
@ See https://lwn.net/Articles/517375/.

33/36

Attributions
®00

Attributions

Outline

© Attributions
@ Attributions

34 /36

Attributions

Attributions : Anatomy of a GPU

Moxfyre: https://en.wikipedia.org/wiki/File:
Motherboard_diagram.svg

Boffy b: https://en.wikipedia.org/wiki/File:
IBM_PC_5150. jpg

Katsuki: https://fr.wikipedia.org/wiki/Fichier:
VGA_plug. jpg

Evan-Amos: https://fr.wikipedia.org/wiki/Fichier:

Dvi-cable. jpg
Evan-Amos: https://en.wikipedia.org/wiki/File:
HDMI-Connector. jpg

Andreas -horn- Hornig: https:
//en.wikipedia.org/wiki/File:Refresh_scan. jpg

Own work: https://en.wikipedia.org/wiki/File:
Virtual_memory.svg

Attributions

oeo

35

36

https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg

Attributions
ooe

Attributions

Attributions : Host : The Linux graphics stack

@ X.org community: X.org schematic

o Kristian Hggsberg: http://wayland.freedesktop.org/

36 /36

http://wayland.freedesktop.org/

	I - Hardware : Anatomy of a GPU
	General overview
	Driving screens
	Host <-> GPU communication

	II - Host : The Linux graphics stack
	General overview
	DRM and libdrm
	Mesa
	X11
	Wayland
	X11 vs Wayland

	Attributions
	Attributions

