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General overview of a modern GPU's functions

@ Display content on a screen
@ Accelerate 2D operations
@ Accelerate 3D operations

@ Decode videos

@ Accelerate scientific calculations
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Source: http://www.flickr.com/photos/stefan_ledwina/557505323

Hardware architecture

@ GPU: Where all the calculations are made

@ VRAM: Stores the textures or general purpose data
@ Video Outputs: Connects to the screen(s)

@ Power stage: Lower the voltage, regulate current

@ Host communication bus: Communication with the CPU
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Driving screens : the big picture

Framebuffer: The image to be displayed on the screen(VRAM)
CRTC: Streams the framebuffer following the screen’s timings
Encoder: Convert the CRTC's output to the right PHY signal

Connector: The actual connector where the screen is plugged
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Screen connectors

@ VGA: Video, introduced in 1987 by IBM

@ DVI: Video, introduced in 1999 by DDWG

e DP: Video & Audio, introduced in 2006 by VESA

e HDMI: Video & Audio, introduced in 1999 by HDMI Founders
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Driving screens
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Driving screens : the CRT Controller
@ Streams the framebuffer following the screen’s timings

o After each line, the CRTC must wait for the CRT to go back
to the beginning of the next line (Horizontal Blank)

@ After each frame, the CRTC must wait for the CRT to go
back to the first line (Vertical Blank)

@ Timings are met by programming the CRTC clock using PLLs
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Driving screens
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Configuring the CRTC : Extended display identification data

@ Stored in each connector of the screen (small EEPROM)

@ Is usually accessed via a dedicated 12C line in the connector
@ Holds the modes supported by the screen connector

@ Processed by the host driver and exposed with the tool xrandr

(see xrandr --verbose)
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Example: Some display standards
@ 1981 : Monochrome Display Adapter (MDA)

e text-only
e monochrome
e 720 * 350 px or 80*25 characters (50Hz)

@ 1981 : Color Graphics Adapter (CGA)

e text & graphics
e 4 bits (16 colours)
e 320 * 200 px (60 Hz)

@ 1987 : Video Graphics Array (VGA)

e text & graphics
e 4 bits (16 colours) or 8 bits (256 colours)
e 320*200px or 640*480px (<= 70 Hz)
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Modern host communication busses

@ 1993 : Peripheral Component Interconnect (PCl)

e 32 bit & 33.33 MHz

e Maximum transfer rate: 133 MB/s
1996 : Accelerated Graphics Port (AGP)

e 32 bit & 66.66 MHz

e Maximum transfer rate: 266 to 2133 MB/s (1x to 8x)
@ 2004 : PCI Express (PCle)

o 1lane: 0.25 — > 2 GB/s (PCle vl.x — > 4.0)
o up to 32 lanes (up to 64 GB/s)
o Improve device-to-device communication (no arbitration)

Several generic configuration address spaces (BAR)
Interruption RQuest (IRQ)
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Programming the GPU : Register access via MMIO

@ A GPU'’s configuration is mostly stored in registers;

@ A register is usually identified by an address in a BAR;
@ We can then access them like memory;
@ This is called Memory-Mapped Input/Output (MMIO).

0 Logical address X
L T T T T
1 1 1 1 1
0 lUnusedI : i q Unused
(swaP).’l P :'/ \\\
y | A . P ot 0 & oxfrtr
e GPU 0, BAR 0
5 : Register Space
Disk RAM PCI-01:00 BARO

Physical address
Example of a CPU process's virtual memory space
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Host < — > GPU communication

GTT/GART

Providing the GPU with easy access to the Host RAM

Process virtual address space (VM)

C |
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Location of the address/memory:
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GART as a CPU-GPU buffer-sharing mechanism

A program can export buffers to the GPU:
e Without actually copying data (faster!);
@ Allow the GPU to read textures & data from the program;
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The GPU needs the host for:

@ Setting the screen mode/resolution (mode setting);
@ Configuring the engines and communication busses;

@ Handling power management;
e Thermal management (fan, react to overheating/power);
o Change the GPU's frequencies/voltage to save power;
@ Processing data:
o Allocate processing contexts (GPU VM + context ID);
o Upload textures or scientific data;
e Send commands to be executed in a context.
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General overview

Overview of the components of a graphics stack

A GPU with its screen;

One or several input devices (mouse, keyboard);

o
o
@ A windowing system (such as the X-Server and Wayland);
@ Accelerated-rendering protocols (such as OpenGL);

o

Graphical applications (such as Firefox or a 3D game).

Components of the Linux Graphics stack

@ Direct Rendering Manager (DRM) : exports GPU primitives;
o X-Server/Wayland : provide a windowing system;

@ Mesa : provides advanced acceleration APlIs;

A
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The Linux graphics stack
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Direct Rendering Manager

@ Inits and configures the GPU;
@ Performs Kernel Mode Setting (KMS);
@ Exports privileged GPU primitives:

o Create context + VM allocation;
Command submission;

VRAM memory management: GEM & TTM,;
Buffer-sharing: GEM & DMA-Buf;

@ Implementation is driver-dependent.

libDRM

@ Wraps the DRM interface into a usable API;
@ Is meant to be only used by Mesa & the DDX;
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Mesa

@ Provides advanced acceleration APlIs:

o 3D acceleration: OpenGL / Direct3D
e Video acceleration: XVMC, VAAPI, VDPAU

@ Mostly device-dependent (requires many drivers);

Mesa

@ Divided between mesa classics and gallium 3D;

Mesa classics

@ Old code-base, mostly used by drivers for old cards;

@ No code sharing between drivers, provide only OpenGL;

Gallium 3D

@ Built for code-sharing between drivers (State Trackers);

@ Pipe drivers follow the instructions from the Gallium interface;

@ Pipe drivers are the device-dependent part of Gallium3D;
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X11 and the X-Server
@ X11 is a remote rendering API that is 25 years old;
@ Exports drawing primitives like filled circles, lines;

@ Is extensible via extensions: eg. DRI2, composite, AIGLX.

@ Implements the X11 protocol and provides extensions;

@ Needs a window manager to display windows (like compiz);

Holds 2D acceleration drivers (DDX): nouveau, radeon, intel;

@ Logs in /var/log/Xorg.0.log (check them for errors).

The X Resize, Rotate and Reflect Extension (XRandR)

@ Common X API to configure screens and multi head;

@ Implemented by the open and proprietary drivers;
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Reaction to an input event

@ 1: The kernel driver evdev sends an event to the X-Server;
@ 2: The X-Server forwards it to the window with the focus;
@ 3: The client updates its window and tell the X-Server;

@ 4 & 5: The X-Server lets the compositor update its view;

@ 6: The X-Server sends the new buffer to the GPU.
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Wayland

@ Protocol started in 2008 by Kristian Hggsberg;

@ Aims to address some of X11 shortcomings;
@ Wayland manages:

o Input events: Send input events to the right application;
o Copy/Paste & Drag'n'Drop;
o Window buffer sharing (the image representing the window);

Wayland Compositor

@ Implements the server side of the Wayland protocol;

@ Talks to Wayland clients and to the driver for compositing;

@ The reference implementation is called Weston.
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Wayland

Wayland Client
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Reaction to an input event

@ 1: The kernel driver evdev sends an input event to “Weston";
@ 2: “Weston” forwards the event to the right Wayland client;
@ 3: The client updates its window and send it to “Weston";

@ 4: Weston updates its view and send it to the GPU.

30/36



Il - Host : The Linux graphics stack
®00

X11 vs Wayland

Outline

e Il - Host : The Linux graphics stack

@ X11 vs Wayland

31/36



Il - Host : The Linux graphics stack
oeo
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X11 vs Wayland

@ Rendering protocol vs compositing API:

e X11 provides old primitives to get 2D acceleration (such as
plain circle, rectangle, ...);

e Wayland let applications render their buffers how they want;

@ Complex & heavy-weight vs minimal & efficient:

e X11 is full of old and useless functions that are hard to
implement;

e Wayland is minimal and only cares about efficient buffer
sharing;

@ Cannot realistically be made secure vs secureable protocol.
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X11 vs Wayland

X11 : Security

@ X doesn't care about security and cannot be fixed:

e Confidentiality: X applications can spy other applications;
o Integrity: X applications can modify other apps’ buffers;
e Auvailability: X applications can grab input and be fullscreen.

@ An X app can get hold of your credentials or bank accounts!

@ An X app can make you believe you are using SSL in Firefox!

Wayland : Security

e Wayland is secure if using a secure buffer-sharing mechanism;
@ See https://lwn.net/Articles/517375/.
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@ X.org community: X.org schematic

o Kristian Hggsberg: http://wayland.freedesktop.org/
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