
Introduction Benchmarking EzBench

EzBench, a tool to help you benchmark and bisect
the Graphics Stack’s performance

Martin Peres

Intel Open Source Technology Center Finland

January 31, 2016

Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking

3 EzBench

Introduction Benchmarking EzBench

Introduction

Introduction

Current situation

Complex games/benchmarks are becoming available on Linux;

Drivers are getting more complex as performance improves;

Users now rely on Open Source drivers for performance.

Risks when merging new code

Break previous functionalities / rendering;

Break the performance of a game inadvertly;

Improve the performance of one game but slow down others.

⇒ Need to benchmark all the platforms and games of interest.

Introduction Benchmarking EzBench

Introduction

Introduction

Current situation

Complex games/benchmarks are becoming available on Linux;

Drivers are getting more complex as performance improves;

Users now rely on Open Source drivers for performance.

Risks when merging new code

Break previous functionalities / rendering;

Break the performance of a game inadvertly;

Improve the performance of one game but slow down others.

⇒ Need to benchmark all the platforms and games of interest.

Introduction Benchmarking EzBench

Introduction

Introduction

Current situation

Complex games/benchmarks are becoming available on Linux;

Drivers are getting more complex as performance improves;

Users now rely on Open Source drivers for performance.

Risks when merging new code

Break previous functionalities / rendering;

Break the performance of a game inadvertly;

Improve the performance of one game but slow down others.

⇒ Need to benchmark all the platforms and games of interest.

Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking
Pitfalls
Automating benchmarking

3 EzBench

Introduction Benchmarking EzBench

Who needs it?

Benchmarking

Different needs for benchmarking

Developers: Run multiple experiments and compare them;

QA: Continuous Integration, performance bug reports.

Introduction Benchmarking EzBench

Who needs it?

Benchmarking

Different needs for benchmarking

Developers: Run multiple experiments and compare them;

QA: Continuous Integration, performance bug reports.

Introduction Benchmarking EzBench

Pitfalls

Pitfalls

Pitfalls of benchmarking

Intra- and inter-runs variance depends on the benchmarks;

Hitting the power budget, a thermal limit or GPU reset;

Being able to reproduce the different test results;

Not using the expected libraries;

Introduction Benchmarking EzBench

Pitfalls

Pitfalls

Pitfalls of benchmarking

Intra- and inter-runs variance depends on the benchmarks;

Hitting the power budget, a thermal limit or GPU reset;

Being able to reproduce the different test results;

Not using the expected libraries;

Introduction Benchmarking EzBench

Pitfalls

Pitfalls

Pitfalls of benchmarking

Intra- and inter-runs variance depends on the benchmarks;

Hitting the power budget, a thermal limit or GPU reset;

Being able to reproduce the different test results;

Not using the expected libraries;

Introduction Benchmarking EzBench

Pitfalls

Pitfalls

Pitfalls of benchmarking

Intra- and inter-runs variance depends on the benchmarks;

Hitting the power budget, a thermal limit or GPU reset;

Being able to reproduce the different test results;

Not using the expected libraries;

Introduction Benchmarking EzBench

Pitfalls

Example of variances

The variance forces us to execute multiple runs, which takes time!

(a) Bad FPS distribution (b) Good FPS distribution

Figure: Examples of variance

Introduction Benchmarking EzBench

Pitfalls

Example of variances

The variance forces us to execute multiple runs, which takes time!

(a) Bad FPS distribution

(b) Good FPS distribution

Figure: Examples of variance

Introduction Benchmarking EzBench

Pitfalls

Example of variances

The variance forces us to execute multiple runs, which takes time!

(a) Bad FPS distribution (b) Good FPS distribution

Figure: Examples of variance

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report

;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside a report;

Understand performance results and act upon them.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be polled from /proc/$pid/maps;

We can hook some functions using LD PRELOAD.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Requires controlling the build process;

Requires package-kit for system libraries.

Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking

3 EzBench
Overview
Architecture and features
Demo
Backup slides

Introduction Benchmarking EzBench

Overview

EzBench - Overview

Ezbench - Goals

Provide workflows and automation to take care of most issues;

Provide a framework quickly adaptable to your needs;

Work for both QA and developers!

Authors

Authors: Martin Peres (Intel) & Chris Wilson (Intel);

Licence: MIT;

Url: http://cgit.freedesktop.org/∼mperes/ezbench/

Introduction Benchmarking EzBench

Overview

EzBench - Overview

Ezbench - Goals

Provide workflows and automation to take care of most issues;

Provide a framework quickly adaptable to your needs;

Work for both QA and developers!

Authors

Authors: Martin Peres (Intel) & Chris Wilson (Intel);

Licence: MIT;

Url: http://cgit.freedesktop.org/∼mperes/ezbench/

Introduction Benchmarking EzBench

Overview

EzBench - Overview

Ezbench - Goals

Provide workflows and automation to take care of most issues;

Provide a framework quickly adaptable to your needs;

Work for both QA and developers!

Authors

Authors: Martin Peres (Intel) & Chris Wilson (Intel);

Licence: MIT;

Url: http://cgit.freedesktop.org/∼mperes/ezbench/

Introduction Benchmarking EzBench

Overview

EzBench - Overview

Ezbench - Goals

Provide workflows and automation to take care of most issues;

Provide a framework quickly adaptable to your needs;

Work for both QA and developers!

Authors

Authors: Martin Peres (Intel) & Chris Wilson (Intel);

Licence: MIT;

Url: http://cgit.freedesktop.org/∼mperes/ezbench/

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Components

Components

core.sh: simple runner;

env dump: dump environment;

ezbench: work scheduler;

utils/ezbench.py: framework;

utils/ezbenchd.py: work executer;

stats/compare reports.py: visualisation.

Introduction Benchmarking EzBench

Architecture and features

EzBench - SHA1-DB

SHA1-DB

Stores SHA1 hashes of the libs you compile;

Allows you to attach metadata to the hash:

Git commit SHA1;
Compilation flags;
Whatever you want!

Introduction Benchmarking EzBench

Architecture and features

EzBench - SHA1-DB

SHA1-DB

Stores SHA1 hashes of the libs you compile;

Allows you to attach metadata to the hash:

Git commit SHA1;
Compilation flags;
Whatever you want!

Introduction Benchmarking EzBench

Architecture and features

EzBench - SHA1-DB

SHA1-DB

Stores SHA1 hashes of the libs you compile;

Allows you to attach metadata to the hash:

Git commit SHA1;

Compilation flags;
Whatever you want!

Introduction Benchmarking EzBench

Architecture and features

EzBench - SHA1-DB

SHA1-DB

Stores SHA1 hashes of the libs you compile;

Allows you to attach metadata to the hash:

Git commit SHA1;
Compilation flags;

Whatever you want!

Introduction Benchmarking EzBench

Architecture and features

EzBench - SHA1-DB

SHA1-DB

Stores SHA1 hashes of the libs you compile;

Allows you to attach metadata to the hash:

Git commit SHA1;
Compilation flags;
Whatever you want!

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);
GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);
GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);

Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);
GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;

X interactions (window/screen sizes);
GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);

GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);
GL/GLX/EGL contexts;

Environment variables.

Introduction Benchmarking EzBench

Architecture and features

EzBench - Env Dump

Env Dump

Shared object LD PRELOADed when running benchmarks;

Captures information about:

HW topology (CPU, RAM, BIOS, MOTHERBOARD);
Dependencies to libraries, binaries and UNIX services;
X interactions (window/screen sizes);
GL/GLX/EGL contexts;
Environment variables.

Introduction Benchmarking EzBench

Demo

EzBench - Demo time!

Demo time and questions!

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse reports;

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Collect the environment information and diff it;

Detect the variance and peformance changes;

Automatically schedule more work to improve the report.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

Introduction Benchmarking EzBench

Backup slides

EzBench - Features

TODO

Watchdog support;

Handle kernel boot failures;

Add support for PTS as a backend;

Better integrate the build process;

React to HW events such as throttling;

Reset the environment to a previous state;

Integrate with patchwork to test patch series;

Predict run times more accurately (compilation done);

Support sending emails to the authors of perf changes.

	Introduction
	Benchmarking
	Pitfalls
	Automating benchmarking

	EzBench
	Overview
	Architecture and features
	Demo
	Backup slides

