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Abstract
Graphics processing units (GPUs) provide signifi-

cant improvements in performance and performance-per-
watt as compared to traditional multicore CPUs. This
energy-efficiency of GPUs has facilitated the use of
GPUs in many application domains. Albeit energy effi-
cient, GPUs consume non-trivial power independently of
CPUs. Therefore, we need to analyze the power and per-
formance characteristic of GPUs and their causal relation
with CPUs in order to reduce the total energy consump-
tion of the system while sustaining high performance. In
this paper, we provide a power and performance anal-
ysis of GPU-accelerated systems for better understand-
ings of these implications. Our analysis on a real system
discloses that system energy can be reduced by 28% re-
taining a decrease in performance within 1% by control-
ling the voltage and frequency levels of GPUs. We show
that energy savings can be achieved when GPU core and
memory clock frequencies are appropriately scaled con-
sidering the workload characteristics. Another interest-
ing finding is that voltage and frequency scaling of CPUs
is trivial for total system energy reduction, and even
should not be applied in state-of-the-art GPU-accelerated
systems. We believe that these findings are useful to de-
velop dynamic voltage and frequency scaling (DVFS) al-
gorithms for GPU-accelerated systems.

1 Introduction

Graphics processing units (GPUs) have been increas-
ingly deployed in general-purpose application domains
due to their significant improvements in performance
and performance-per-watt. As depicted in Figure 1,
the performance-per-watt of GPUs highly outperforms
that of traditional multicore CPUs. Albeit energy ef-
ficient, GPUs consume non-trivial power during opera-
tion. However, commodity system software for GPUs
is not well designed to control their power consump-
tion while primarily tailored to accelerate computations.
To the best of our knowledge, commodity system soft-
ware does not employ any voltage and frequency scal-
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Figure 1: Performance-per-watt trends on representative
NVIDIA GPUs [11] and Intel CPUs [6].

ing for GPUs, while most computational pieces of GPU-
accelerated systems are offloaded on to GPUs. In order
to develop energy-efficient GPU-accelerated systems, it
is essential to identify the trade-off in power and perfor-
mance of GPUs and its causal relation with CPUs.

Despite rapid growth of GPU technology, there has
not been much understanding of power and performance
implications of GPU-accelerated systems. According to
vendor’s specifications, thermal design power (TDP) of
state-of-the-art GPUs is around 200W, while that of to-
day’s multicore CPUs is typically below 100W. Because
TDP of GPUs is comparable to or even higher than that
of CPUs, it is hard for system designers to optimize their
energy savings by predicting the power and performance
of GPU-accelerated systems without understandings of
GPU power-performance characteristics. However, pre-
vious work [4, 3, 7, 9, 10] on the power and performance
analysis of GPU-accelerated systems are based on ei-
ther simulation studies or limited hardware functionality.
None of previous work has ever disclosed a fundamental
approach to the power and

The contribution of this paper is to provide a power
and performance analysis of GPU-accelerated systems
using NVIDIA’s Fermi architecture (GeForce GTX 480).
Specifically, we identify when to scale the frequency and
voltage of GPUs and CPUs in order to minimize overall
system energy. Our analysis opens up important prob-
lems of dynamic voltage and frequency scaling (DVFS)
algorithms for growing GPU-accelerated systems. We
also provide an open method and tool to scale voltage
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Table 1: Performance levels of GTX 480 (GPU)
Clock Domains Min [MHz] Low [MHz] High [MHz]

Core 50 405 700
Memory 135 324 1848

Table 2: Performance levels of Core i5 2400 (CPU)

Platforms Min [MHz] Low [MHz] High [MHz]
Core i5-2400 1600 2700 3300.1

and frequency of GPUs. The black box feature of cur-
rent GPU drivers and runtimes prevents researchers from
tackling correlative power and performance optimiza-
tion problems. We believe that sharing such a common
method and tool with researchers would further facilitate
the use of GPUs.

The rest of this paper is organized as follows. Sec-
tion 2 presents our system platform and Section 3 pro-
vides evaluation results and analyses. Section 4 discusses
related work, and the paper is concluded in Section 5.

2 System Platform

We use an NVIDIA GeForce GTX 480 graphics card and
Intel Core i5 2400 processor with the Linux kernel 3.3.0.
Tables 1 and 2 present their available performance lev-
els, respectively. To perform the experiment, we use
NVIDIA’s proprietary software [13] and Gdev [8] on a
case by case basis. NVIDIA’s proprietary software does
not provide a system interface to scale the performance
level of the GPU. We hence provide the modified BIOS
files for the GPU that force the binary driver to config-
ure the GPU with the specified performance level when
loaded. This method enables us to choose any set of the
GPU core and memory clocks, but requires the driver to
reload, and the configuration is static while the driver is
running. On the other hand, Gdev allows the system to
change the performance level of the GPU dynamically
at runtime through the Linux “/proc” file system inter-
face. However, it is available only for the GPU core clock
at the moment, and the GPU memory clock is fixed at
135MHz. This is limited due to an open-source imple-
mentation of Linux, but is supposed to be removed in the
future release.

The experimental workload executes the Rodinia
benchmark suite 2.0.1 [2] and our original microbench-
mark programs of matrix computation. All input data
for the Rodinia programs use the maximum feasible
size, while the microbenchmark programs vary data size
to conduct fine-grained measurements, all of which are
written in CUDA. We use the NVIDIA CUDA Compiler
(NVCC) 4.0 [12] to compile the programs. Note that
both NVIDIA’s proprietary software and Gdev receive
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Figure 2: Power consumption and execution time of the
512× 512 matrix addition program.

the same program binary.
The power and energy consumption of the system

is measured by the Yokogawa Electric Corporation’s
WT1600 digital power meter [1]. This instrument ob-
tains the voltage and electric current every 50ms from the
power plug of the machine. The power consumption is
calculated by multiplying the voltage and current, while
the energy consumption is derived by accumulation of
power consumption.

3 Evaluation and Analysis

We first investigate the impact of GPU core and mem-
ory clocks on GPU-intensive workload executing 20,000
loops of 512 × 512 matrix addition. The voltage and
frequency of the GPU is changed three times during the
operation, while that of the CPU is fixed at the mini-
mum level to focus on the behavior of the GPU. Fig-
ure 2 shows the power consumption of the system in
this setup, where “c-*” and “m-*” stand for the GPU
core and memory clocks, respectively, while “E*” rep-
resents the cumulative energy consumption of the corre-
sponding duration. What is learned from this experiment
is that it is important to cooperatively scale the GPU
core and memory clocks to effectively reduce energy
consumption. Lowering the memory clock to 135MHz
successfully reduces energy consumption, but the down-
scaling of the core clock to 405MHz counter-increases
energy consumption. This indeed implies DVFS algo-
rithms dominate the power and performance of GPU-
accelerated systems.

We next coordinate the GPU and the CPU using more
realistic workload from the Rodinia benchmark suite. To
simplify the setup, we consider only high and low core
clocks, meaning that we evaluate four configurations of
(GPU-L, CPU-L), (GPU-H, CPU-L), (GPU-L, CPU-H)
and (GPU-H, CPU-H), where “*-L” and “*-H” repre-
sent the low and high core clocks. The GPU memory
clock is fixed at 135MHz. In an idle state, however, the
clocks are always down-scaled to the minimum level. We
also add another configuration (all-H) that keeps at the
maximum clocks even though the GPU is idle, in order
to see the impact of elementary coordinated DVFS on
GPU-accelerated systems. Figures 3 and 4 respectively
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Figure 3: Execution time of the Rodinia programs.
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Figure 4: Energy consumption of the Rodinia programs.
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Figure 5: Power consumption in an idle state.

show the execution time and energy consumption of four
representative programs of the Rodinia benchmark suite.
Regarding the execution time, “all-H” always takes the
shortest execution time, as it consistently keeps at the
maximum performance level. Other configurations how-
ever depend on workload. For example, the execution
time of heartwall – GPU-intensive workload – can
be decreased by setting the high GPU clock, whereas
that of hotspot is rather affected by the CPU clock.
The characteristics of energy consumption is more com-
plicated. For some workload, lowering the clock causes
an increase in energy consumption, as the duration of ex-
ecution is increased, consuming more cumulative power
consumption. In other words, GPU-intensive workload
should generally use the high GPU clock so that it com-
pletes operation as soon as possible to minimize energy.
Apparently, “all-H” is not a good idea in terms of en-
ergy; the clock should be minimized when the device is
not used.

In the above experiments, we have never observed that
energy consumption is reduced by lowering the CPU
clock. This is because lowering the CPU clock causes

the GPU to increase the duration of an idle state. Hence,
energy is always wasted when the GPU is idle. We
demonstrate how energy consumption is wasted in an
idle state, when (i) the GPU is not present and (ii) is
present with three levels of a set of voltage and fre-
quency. Figure 5 shows the average power consumption
of those four cases obtained by running the system for
60 seconds without performing any computations (idle
state). The CPU consumes no more than 38W on aver-
age, whereas the GPU-installed systems consume a dif-
ferent scale of power depending on the configured set of
voltage and frequency. This observation encourages the
system not to downscale the voltage and frequency of the
CPU, unless the idle power consumption of future GPUs
becomes small enough by hardware optimization tech-
niques. The lesson learned from this experiment is that
the power consumption of the GPU is significant even in
an idle state, meaning that DVFS is strongly desired for
the GPU with whatever overhead it has to pay for chang-
ing the performance level.

The preceding evaluation indicates that the CPU is a
weak factor for energy savings of GPU-accelerated sys-
tems. Henceforth, we restrict our attention to the GPU.
According to the traditional power modeling [5], lower-
ing the core clock is often effective for memory-intensive
workload. Our next evaluation verifies whether the same
is true for the GPU. We use matrix addition and multipli-
cation programs with varied sizes of data. A small size of
data reduces memory accesses, while a large size of data
makes the workload memory-intensive. Figures 6 and 7
show the execution time and energy consumption of
those matrix computations, where “s-*” represents the
number of matrix row/column. A difference between “s-
64” and “s-8192” in Figure 7 shows that memory-clock
scaling is more effective for such computations that use
a smaller size of data. This is because the execution
time of such computations is not affected by lowering the
memory clock. Another observation is that energy can-
not be saved by lowering the core clock, because these
matrix computations are consistently compute-intensive.
If the core clock is downscaled, their execution time is
highly increased, which results in an increase in cumula-
tive power consumption.

Seen from the above experiments, system energy
could be reduced by about 28% retaining a decrease
in performance within 1%. These experimental results
encourage that DVFS algorithms for GPU-accelerated
systems should be weighted on the GPU rather than
the CPU, though their energy optimization is very chal-
lenging, given many factors of design knobs including
CPU/GPU, core/memory, and workload characteristics.

Finally, we compare NVIDIA’s proprietary software
and Gdev. This is an important and practical investi-
gation because NVIDIA’s proprietary software does not
expose a system interface to change the voltage and fre-
quency of the GPU dynamically at runtime, and hence
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(b) Matrix Multiplication

Figure 6: Execution time of the matrix addition and multiplication programs.
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Figure 7: Energy consumption of the matrix addition and multiplication programs.
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Figure 8: Comparison of the NVIDIA proprietary and
the Gdev open-source runtimes and drivers.

the development of DVFS algorithms in future work
will inevitably depend on Gdev. The basic performance
of Gdev is competitive to NVIDIA’s proprietary soft-
ware [8], but we have to evince that Gdev is also reliable
for power management. The test program exploits matrix
addition with varied sizes of data. Figure 8 shows the ex-
ecution time and energy consumption of the matrix addi-
tion programs using different scales of GPU core clocks,
where the GPU memory clock is fixed at 135MHz. In
this experiment, “s-8192” benefits from lowering the
core clock, because the workload is memory-bound due
to a large size of matrix, and the execution time is not
much affected by the core clock, while energy is effec-
tively saved. The most remarkable observation is that
NVIDIA’s proprietary software and Gdev exhibit almost
the same results on the execution time and energy con-
sumption. This implies that the result of our on-going
research using Gdev could be easily propagated to the
real product, once energy management interfaces are em-
ployed by vendor’s software. Note that tools and docu-
mentations for the power and performance management
of the GPU may be downloaded from our website.1

1http://sys.ertl.jp/gdev/
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4 Related Work

Nagasaka et al. conjectured energy consumption of
GPUs based on hardware performance counters [10].
Their model is not adequate in that we have seen that
power consumption rises even in an idle state when volt-
age and frequency are scaled, though they do not con-
sider it. Hence, this approach would require an addi-
tional model to precisely analyze the power consumption
of GPUs.

Hong et al. studied energy savings of GPUs, assum-
ing power gating available to limit the number of ac-
tive cores [3, 4]. In particular, they analyze PTX code
to model the power and performance of GPUs based on
the number of instructions and memory accesses. We
consider that an offline PTX analysis for power and per-
formance prediction is a useful approach to the design
of DVFS algorithms. What lacks in this approach, how-
ever, is a runtime analysis for input data. In this paper,
we have analyzed the power and performance character-
istics depending on the size of input data.

Lee et al. presented a method to apply DVFS algo-
rithms to the GPU. They particularly aimed at maximiz-
ing performance under the given power constraint [9]. A
strong limitation of their work, however, is that the eval-
uation of power consumption is based on a conceptual
model but not on real-world hardware. They also failed
to discuss how to determine the voltage and frequency.
In this paper, we have rather explored how to minimize
the energy consumption of GPU-accelerated systems us-
ing the cutting-edge real-world hardware.

Jiao et al. evaluated the power and performance of
an old NVIDIA GTX 280 GPU [7]. They examined
compute-intensive and memory-intensive programs. Ac-
cording to their analysis, energy consumption could of-
ten be reduced by lowering the core clock when work-
load is memory-intensive. This is exactly the same
as what we have identified for an NVIDIA’s GTX 480
GPU. Therefore, we conjecture that this observation and
knowledge could be applied to future GPU architectures
as well. In addition, we have disclosed that energy con-
sumption could also be reduced by scaling the memory
clock. This opens up a new insight into DVFS algorithms
for GPU-accelerated systems.

Ying et al. analyzed the power and performance of an
AMD HD 5870 GPU using a random forest method with
the profile counter [14]. They revealed that activating
a fewer number of ALUs reduces power consumption.
However, this approach incurs an increase in execution
time, and does not successfully reduce energy consump-
tion. This is attributed to the fact that they use only soft-
ware management. Meanwhile, we have demonstrated
that energy can be reduced by scaling the voltage and
frequency of the GPU.

5 Conclusion and Future Work

We have presented a power and performance analysis of
GPU-accelerated systems based on the NVIDIA Fermi
architecture. Our findings include that the CPU is a weak
factor for energy savings of GPU-accelerated systems
unless power gating is supported by the GPU. In con-
trast, voltage and frequency scaling of the GPU is sig-
nificant to reduce energy consumption. Our experimen-
tal results demonstrated that system energy could be re-
duced by about 28% retaining a decrease in performance
within 1%, if the performance level of the GPU can be
scaled effectively.

In future work, we plan to develop DVFS algorithms
for GPU-accelerated systems, using the characteristic
identified in this paper. We basically consider such an
approach that controls the GPU core clock for memory-
intensive workload while controls the GPU memory
clock for compute-intensive workload. To this end, we
integrate PTX code analysis [3, 4] into DVFS algorithms
so that energy optimization can be provided at runtime.
We also consider a further dynamic scheme that scales
the performance level of the GPU during the execution
of GPU code, whereas we restricted a scaling point at
the boundary of GPU code in this paper.
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